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z ABSTRACT

.

The CV (collective vector) method for calculating El moments for a

transition array is described and applied in two cases, herein denoted Z26A

and Z26B, pertaining to two different configurations of iron VI. The basic

idea of the method is to create a CV from each of the parent (“initial state”)

state-vectors of the transition array by application of the El operator. The

moments of each of these CV’S, referred to the parent energy, are then the

rigorous moments for that parent, requiring no state decomposition of the

..
.
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manifold of daughter state-vectors. Since, in cases of

the daughter manifold can be orders of magnitude larger

parent manifold, this makes possible the calculation of

than the second in situations hitherto unattainable

combination of the moments of all the parents, with

weighting, then yields the transition array moments

via

practical interest, ‘

in size than the

many moments higher

standard methods. The

proper statistical

from which the transition

strength distribution can be derived by various procedures. We describe two

of these procedures: (1) The well-known GC (Gram-Charlier) expansion in terms

of Hermite polynomials, (2) The Lanczos algorithm or Stieltjes imaging method,

also called herein the delta expansion. Application is made in the cases of

Z26A (50 lines) and Z26B (5523 lines) and the relative merits and shortcomings

of the two procedures are discussed.



I. Introduction

The use of collective state-vectors in getting transition strength

distributions in many fermion systems is a standard technique in, for exanple,

the RPA (random phase approximation) or the TDA (Tamn-Dancoff approximation).

Herewe describe a method where such state-vectors can, in principle, be used

to obtain moments of arbitrary multipolarity to any order without making any

approximations in the character of either the excitation or the correlations

in the “ground” or parent state vector lb, as we shall term it here. As

in any other method there are important limitations to this method. However

our emphasis here is on the calculation of El (electric dipole) moments in

atomic transition arrays where, as we shall show, these limitations are

sufficiently loose so as to permit the study of complex atoms where ordinary

diagonalization is impractical or other methods are limited to the evaluation

l~2s3 For obviOUsof at most the second or, in some cases, the third moment.

reasons we call this the CV (collective vector) method. More general

discussions of the method, in the context of nuclear applications, can be

found in Refs. 4 and 5.

..

The definition of the CV is simple since, as usual, it requires on”

IP>, the parent state vector and the El one-body operator, denoted by

(El). The action of (El) on 1P> produces ICE1;P>, the collective El

or daughter state vector,

Y

a

where it is to be noted that in general lCEl;p> is an eigenvector of
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the Hamiltonian, as [b is. Note also that

daughter is much larger than for the parent

particle/holeexcitationproduced by the El

the model space for the

by virtue of the extra

excitation (see below). The total

strength for the transition, sometimes called the EUS, i.e. the energy

unweighed sum, is given by,

..

.
.

.

..
.

OIJP)2= <CE1;PICE1;% (2)

where the aptness of the symbol (Np)2 will become clear shortly. The

centroidal moments ~cn(P) pertaining to each parent tl% are given by,

~cn(P) = <CEl;Pl(H-<H>)nl CEl;l%/(Np)2; n> 1 (3)

where we now see that the total strength (NP)2 is the no~alizing factor

for the moments.

Besides the centroidal moments MCn( P) we need the difference in energy

between the parent state 1P> and the centroid of ICE1;P> for which we

use the symbol <Hi>,

<HI> = [<CEl;PIHICEl ;P>/(Np)2] - <PIHIP> (4)

In principlewe now have all

distribution but we have not

that is needed

yet considered

to get the El strength

the spin projection dependence
.
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explicitly. We will not give in all detail the equations with this feature

included but give only the full expression for the El operator, which is very

simple and will suffice to make the major arguments we need,

(El) = ~(El)P (5)
v

where v is the spin projection for the El operator. With Eq. (5) we can

easily derive from Eq. (3) the familiar result for the n’th

in factorized form,

lln(P) = ~ <JIMI l(EI)l W>2<JIl (H-< H>)ntJ>/(Np)2;
J’M’

where (JM, J’M’) refer to (parent, daughter) spins and spin

that this result is independent of M due to Eq. (5) and the

which is to say~n 1s, as it must be, a scalar. Because of

centroidal moment

n> 1 (6)

projections. Note

scalarity of H,

this a further

simplification of Eq. (6) can be effected by the use of reduced matrix

elements yielding,

vn(P) = ~<J’llEl~iJ>2<J’l(H-<H>n)~J>/(Np)2 (7a)

(NP)2 = ~< J’ll Ell!&2 (7b)

where all explicit spin-projection dependence has been eliminated. Note that

there has been a slight change in the definition of the normalization

(NP)2 (by a factor of (2J+1)) to conform to the use of reduced matrix

elements.

..
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It is Eqs. (7a, b) and their practical evaluation viaEq. (3), which

forms the basis for all the results to be described herein. The ingredients

of the actual computation are the collective state vector ICE1;P>, the

parent state vector 1P>, and, of course, some means of calculating the

various matrix elements required. In our case we,have used the system of

codes called VLADIMIR at LLNL to make all the required state-vectors as well

as the Hamiltonian matrix elements. We will not discuss the VLADIMIR codes

here except to note that they are couched entirely in terms of Fock space

representation (2nd quantization) which, for the purposes involved here, is

particularly useful since this makes it possible to deal with state-vectors

and operators on a separate footing. [Two examples of the uti 1 ity of this

feature are in the implementation of Eqs. (1) and (5).] Further details may

be found inRefs. 5 and 6.

II. Calculating the transition array

An atomic transition array generally has many parent states andwe wish to

utilize the set of moments Mn(P) to describe the entire array. As we have

seen only the state-vectors of the parent configuration are explicitly

required, not those of the daughter. This makes for considerable computer

economy, since, for example, in the two cases to be illustrated the parent

configurations have 19 and 180 parent states, while the daughter

configurations have respectively 128 and 3449 states.

The most cmnon method for calculation of the transition array from the

7
moments is the Gram-Charlier expansion. This gives the strength function
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SP(0) as a series in Hermite polynomials,

Sp(u) = (2/m)”2 ~ cn(P)exp
{ } n(=) ‘8)

-( U-< Hl>)2/2V2(P) H
n=o

with <HI> given in Eq. (4) and V2(P) being the second centroidal

moment of the array arising from 1*. This expansion is exact If carried

to infinite order, but as a practical matter is truncated at some value n = N,

with the coefficients CO, C1...CN chosen so that the truncated expansion

gives the first N+l centroidal moments correctly (IJo = 1, WI = O).

This procedure will be illustrated in the next section, where a deficiency

associated with the GC method will become apparent. It arises from the fact

that the finite expansion allows negative values for SP(U). These

negative excursions [SP(W) must of course be positive definite] can become

quite significant, as will be seen.

A second procedure for synthesizing the transition strength distribution

is the Stieltjes Imaging or delta expansion method. Here we use the Lanczos

algorittmn to implement the delta expansion. This has two main advantages:

(1) it is more convenient computational ly, about twice as fast as a

straightforward evaluation of the moments, and (2) it yields a finite width to

be associated with each line. The Lanczos procedure constructs a truncated set

of basis vectors in the daughter model space, and, from these, generates a set

of approximate elgenvectors Ie.v;> of the daughter configuration. The

energies of the

energies, while

approximate eigenvectors fix the delta expansion line

the line intensities are the square of the projections of

#
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~CEl:% on these vectors. Finally, a computational width (as

distinguished from a physical width) can be assigned to each line, to wit the

energy fluctuation of that eigenvector, i.e.,

~2 =<e*vo,H2,e*vo> -<ecv*, H~eov*>2
(9)

●.

. Detailed discussions of the Lanczos method can be found in Refs. 6 and
.

10..

111.Results

In this sectionwe give results for two calculations, labeled Z26A and

Z26B, transition arrays for two parent configurations of Iron VI. The

transition arrays correspond to

Z26A : (3d)3 +(3d)2(4p)

Z26B: (3p)5(3d)4 + (3p)5(3d)3(4f).

We discuss the Z26A case first. Here there are 4 parent energy levels and

distinct parent states in total J energy. In both parent and daughter

takes on 6 distinct values, ranging frcxm J = 1/2 to J = 11/2. This high

19

J

..

.

degree of degeneracy results from the pure LS coupling used in both examples

Z26Aand Z26B. In this first example there are 50 transitions, distinct in

energy, shown in Fig. la (with the exception of a few extremely weak lines).

-7-



This is an absorption spectrum save for a few lines at energa

The arbitrary width ofw = 0.06 eVwas assigned to all lines

easier display, and also for consistency with the width used

es about -&V.

for the sake of

in the delta

expansion (see below). Figure lb exhibits the same spectrum, this time for

positive transition energies only, with widthw = 0.25 eV. This is a much
.

smoother representation and, as will now be seen, is much more appropriate for
.

comparison with the GC (Gram-Charlier) expansion results. In Fig. 2awe show 2

the GC expansion results for 6 moments per parent, so that this represents a

superposition of 19 GC expansions, each up to the 6th moment. We note the

negative excursion at a 12 eV, not too severe in this case. We have limited

ourselves to the positive (absorption) spectrum only in this figure and also

in Fig. 2b, which is an overlay of the GC result and the microscopic result

with w = 0.25eV (Fig. lb). There is a fair correspondence between the

broadened microscopic spectrum and the GC expansion except for such features

as the peak ats 8.5 eV. To obtain a better feeling as to how the GC method

tries to fit simple spectra, we show in Fig. 3 the 6 moment result for one

value of J, i.e., J = 11/2, which has only one parent and 3 lines (shown there

with their proper strengths). For such spectra the GC method is completely

inappropriate, but nonetheless this shows that the GC method would be equally

inappropriate in cases where complex intermediate structure is of physical

interest.
.

Amore suitable method for studying structure in transition arrays is the
,

delta expansion, the results for which are shown in Fig. 4. The delta 4

expansion spectrum using 12 iterations per parent (corresponding to 23 moments

per parent) is shown in Fig. 4a, while Fig. 4b shows that for 6 iterations per

-8-



parent (11 moments). In both each line was assigned awidtheither givenby

Eq. (8) or 0.06 eV, whichever was larger. The 12 iteration result is

virtually indistinguishable from themicroscoplc result (Fig. la). All the

weaker lines in the 6 iteration delta expansion spectrum have widths generated

by the method itself, and comparison of this with the microscopic spectrum
*.

demonstrates nicely how the Lanczos method smoothes over the discrete
.
# structure when the algorithm has not reached complete convergence, as it had

. in the 12 iteration calculation.

Table 1 gives the overall manents for the entire Z26A array as calculated

from the microscopic spectrum, the GC expansion, and the delta expansion. The

GC moments depart substantially frcm the exact values by the 10th moment

getting rapidly worse after this, despite the fact that the GC method

generates 6 x 19 = 114 moments worth of information. (The slight deviations

up to the 6th overall moment are due to neglect of the weak negative energy

transitions.) The delta expansion moments agree within ~25% with the

microscopic values up to the 12th moment for the 6 iteration calculation with

full widths for each line (see Sect. II). (For the 12 iteration result the

agreement is marred only by the missing peaks in the microscopic spectrum.)

In this case there are 19x 11 = 209 moments worth of information,

corresponding roughly to the 6 moment GC computation in that the computation

times required are about the same, the delta expansion method being about a
:

.

factor of 2 faster.

The delta expansion result at 6 iterations per parent with full widths for

each line, (see Sect. II) yields moments at significant variance with the

microscopic values beyond the 12th moment (not s,hown in Table 1) due to the
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distortion introduced by the Intrinsic widths. However, Fig. 5 shows that the

loss of some moment information is rather well compensatedby the gain of the

correct smoothed structural definition in both the weak and strong transition

regions.

The Z26B case has 50 parent energy levels and 180 distinct parent states
.

in both J and energy. J takes on 8 distinct values in the parent

configuration (up to J = 15/2) and 9 for the daughter (up to J = 17/2). There

are 5523 distinct transitions, shown in Fig. 6a with w = O.1O eV and in

Fig. 6bwith

seen in Fig.

exhibits the

parent. The

w = 0.25eV. As might be expected, no individual transitions are

6b, but considerable “intermediate” structure remains. Figure 7

overlay of Fig. 6b with the GC result using 6 mcmnents per

wings of the strength distribution are fitted quite well (except

for the usual negative dips), but the center portion has a severe ne9ative

!
excursion, a result of the GC method trying to reproduce the double-humped

structure of this particular spectrum. We show delta expansion results here

only for the set of parent states with J = 15/2. There are 2 such, with about

150 daughters and about 100 lines. Figure 8a gives the Lanczos results with

12 iterations per parent, and with each line assigned awidthof 0.2 eV.

Assigning a small constant width ~0.2 eV) leaves the moments unaltered,

and it is to be emphasized that the first 24 moments obtained this way are

exact, i.e. as essentially as if calculated at zero width. Figure 8b exhibits

the same delta expansion with the computational widths, Eq. (8), assigned to

each line, and Fig. 8C overlays these two. In Fig. 8d, we show the ove~layof

Fig. 8a, and the 6 iteration delta expansion result with full width. As above

the major effect of using the full widths is to smooth the resultant spectrum,

-1o-
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without greatly altering its general shape. One does not really need the full

12 iterations to obtain a substantially correct strength distribution. Table

II gives the values for the moments for the J = 15/2 parent manifold, for

these various computations. Beyond the 6thmanent, those obtained from the

full width spectra for both 6 and 12 iterations diverge from the
.

.
,

..

.
.

moments. This, as before, is a distortion due to

Nonetheless, as before, the shape of the spectrum

the delta expansion method than by the GC method.

the broadening

is much better

correct

procedure.

retained by

IV.Conclusion

Although the second test case (Z26B) is not complete, a number of firm

conclusions may be drawn. First the general procedure described here forms a

practical method for characterizing atomic transition arrays, and is

especially applicable when the array contains more than 5000 lines

(essentially the limiting number for use of purely microscopic methods). It

is to be emphasized that although intermediate coupling and/or configuration

interaction effects have not been considered in these test cases, such effects

can be included with no additional work and with no increase in computer time.

Secondly, the use of a Gram-Charlier type of description of the array

seems to be useful only for the gross overall features determined from the

first few moments. Sixth (or higher) order Gram-Charlier expansions result in

unphysical negative strength distributions. In any case, the GC expansion as

a practical matter appears incapable of giving any structure in the transition

array. The Lanczos delta-expansion on the other hand is positive definite

everywhere and can be used to give detailed structure in the array,

-11-



unambiguously giving strength distributions quite similar to the

microscopically computed array. This clearly seems the preferred method when

4 or more moments are known.

One difficulty of our method is the fact that as of now it is executed for

each of the parent states. Test case Z26B has 180 such parent states, and

interesting arrays could have many more. We intend then to develop a Monte

Carlo-Lanczos procedure to simulate the states of the parent configuration. .

That is, we choose a randcxn starting vector and then use the Lanczos method to

construct approximate eigenstates within the parent

will considerably shorten the computation and allow

parent manifolds, for exmple configurations in the

manifold. This procedure

application to much larger

N-shell.

.

,
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Table I Overall moments up to the 12th moment. for case Z26A. as.
computed from microscopic spectrum, etc. The overal~ moments
are the weighed sums of the moments of each parent (see Sect.
I). The units are arbitrary. The exponents are given in
parentheses. See Sect. III.

n

2

3

4

5

6

7

8

9

10

11

12

Microscopic

7.65

-1.55 (1)

2.59 (2)

-1.29 (3)

1.80 (4)

-1.34 (5)

1.76 (6)

-1.62 (7)

2.04 (8)

-2.08 (9)

2.55 (10)

g

Nmm = 6

7.73

-1.59 (1)

2.62 (2)

-1.26 (3)

1.68 (4)

-1.16 (5)

1.61 (6)

-1.61 (7)

2.57 (8)

-3.63 (9)

6.34 (10)

Lanczos (full widths)

Nit= 6 Nit = 12

7.77 7.74

-1.64 (1) -1,62 (1)

2.70 (2) 2.66 (2)

-1.38 (3) 1.34 (3)

1.90 (4] 1.85 (4)

-1.44 (5) -1.36 (5)

1.89 (6) 1.78 (6)

1.76 (7) -1.61 (7)

2.23 (8) 2.03 (8)

-2.32 (9) -2.05 (9)

2.86 (10) 2.50 (10)

.
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Table 11

n

..

2

3

4

5

6

7

8

9

10

11

12

Moments for case Z26B for the parent state manifold with J = 15/2.
There are 2 parent states and approximately 150 daughter states that
are connected to these parents by El transitions. See Sect. III.

Nit= 12

w=O.2 ev
(correct )

7.46

-2.38 (1)

4.06 (2)

-3.85 (3)

4.78 (4)

-5.60 (5)

6.91 (6)

-8.65 (7)

1.13 (9)

-1.54 (10)

2.28 (11)

Nit = 12

full width

8.25

-2.42 (1)

4.55 (2)

-4.05 (3)

5.52 (4)

-6.58 (5)

9.02 (6)

-1.26 (8)

1.94 (9)

-3.28 (10)

6.19 (11)

Nit= 6

full width

8.57

-1.75 (1)

5.00 (2)

-3.62 (3)

5.71 (4)

-5.93 (5)

8.41 (6)

-1.04 (8)

1.54 (9)

-2.31 (10)

4.11 (11)

GC

~m=6

7.44

-2.34 (1)

4.04 (2)

-3.81 (3)

4.73 (4)

-4.21 (5)

5.76 (6)

-6.04 (7)

7.97 (8)

-1.06 (10)

1.29 (11)

..

●
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FIGURE CAPTIONS

Fig. l-a: Microscopic spectrum for Z26A with a width w = 0.06 eV, for48

lines (unnormalized). This is an absorption spectrum except for

the two negative energy ltnes at * -3eV. See Sect. 111.

..

9

Fig. l-b: Same as Fig. l-a except that w

energy part of the spectrum is

= 0.25 eV. and the negative

not displayed. Also this

distribution is normalized to unity. See Sect. III.

Fig. 2-a: The Gram-Charlier (GC) expansion for Z26A with 6 moments per

parent (19 parents). See Sect. III for a fuller discussion.

Fig. 2-b: Overlay of Figs. 2-a and l-b. Note that the GC representation

:

*

has significant

energy region.

contributions from the

Fig. 3: Case Z26A. Overlay of the 6moment GC

microscopic strengths originating from

off-scale (unphysical)

expansion and the 3

the single parent with

J = 11/2. See Sect. III for a fuller discussion.

Fig. 4-a: Delta expansion result for Z26A with 12 iterations per parent,

with minimum

Fig. 4-b: Same as Fig.

width W = 0.06eV. See Sect. III.

4-a, but with 6 iterations per parent.
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Fig. 5:

Fig. 6-a:

Fig. 6-b:

Fig. 7:

Overlay of case Z26A microscopic spectrum, Fig. l-a, and delta

expansion, Fig. 4-b. See Sect. 111.

Microscopic spectrum for test case Z26B, with each line given a

width w = 0.1 eV. This emission spectrum contains 5523 lines,

mainly unresolved, even at 0.1 eV width.

Same as Fig. 6-a, butwithwidthw = 0.25eV. There are no
~

unresolved line$ using this width.

Overlayof GC results for Z26B with 6 moments per parent (180

parents) with the microscopic spectrum of Fig. 6-b. The extreme

negative excursion at the center of the spectrum arises from the

Fig. 8-a:

Fig. 8-b:

Fig. 8-c:

attempt of the GC method to reproduce the double peaked

structure of the true spectrum. See Sect. III.

Delta expansion result (for Z26B) for the two parent states with

J= 15/2. The canputation used 12 iterations per parent, and

each line was given a width w = 0.2 eV. See Sect. 111.

Same as Fig. 8-a, except each line was given its full intrinsic

width as discussed in Sect. III.
.

#

Overlay of Figs. 8-a and 8-b.
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Fig. %-d: Overlay of Fig. 8-a and the delta expansion with full width but

with 6 (rather than 12) iterations per parent.

*.

t

.

:
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